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I think I am safe in assuming tha t  I am addressing you today as a 
consequence of my  role in the development  of methods for the discovery 
and representation of structures underlying matrices of similarity da ta  
and, specifically, the methods now most  widely referred to as nonmetric 
multidimensional scaling. In  the dozen years tha t  have elapsed since I 
originally reported this development in the journal of this Society [Shepard, 
1962a, b], we have gained an enormous amount  of experience in using a 
number  of methods of this general type in the analysis of diverse sets of 
similarity data. Accordingly, I thought  this might be a suitable occasion, 
to set forth what appear  to me to be the six major  problems tha t  still confront 
a t tempts  to use nonmetric multidimensional scaling to represent structures 
underlying similarity data,  and to indicate what  appear  to me to be the 
prospects for overcoming each of these six problems. First, though, I need 
to make a few remarks  concerning the background and scope of what  I am 
proposing to do. 

Type o] Data and Types o/Models Considered 
I shall limit myself entirely to the very simplest case in which we have 

a single, complete set of n(n -- 1)/2 measures, of whatever  sort, of the pair- 
wise similarities among n objects of in teres t - -whether  stimuli, concepts, 
persons, traits, symptoms,  cultures, or species. As usual, I shall suppose 
these measures to be arrayed in the below-diagonal tr iangular half of an 
n X n similarity matr ix  in which the n rows and n columns correspond to 
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the same n objects. Thus, I shall not explicitly consider a number of more 
complex cases of considerable inherent interest and practical importance, 
including cases in which the rows and columns do not correspond to the 
same set of objects and in which the matrix may in fact be rectangular rather 
than square (in accordance with the "ideal-points" or "unfolding" model 
of Coombs [1964]), and cases in which similarity data in several different 
n X n matrices, or, equivalently, in one three-way n X n X m matrix are 
to be analyzed simultaneously (as in the powerful metric methods recently 
developed by Carroll and Chang [1970], by Harshman [1970], and by Tucker 
[1972]). 

Most of my remarks will presuppose the basic type of m(~del upon which 
all widely used methods of nonmetric multidimensional scaling are currently 
based; namely, that for monotone mapping of similarity data into distances 
in a coordinate space• However, as alternative ways of overcoming some of 
the six problems, I shall also present methods, together with illustrative 
applications, based upon some fundamentally different models, in which 
either or both the notions of distance or an underlying coordinate space 
are abandoned. It  is in order to facilitate the consideration of models in 
which the notions of distance and, hence, proximity no longer play a central 
role that, throughout this paper, I am using the theoretically more neutral 
term "similarity data" rather than the term "proximity data," which was 
implicit in the name that I gave to my original method and which I, along 
with Coombs, have previously favored [Coombs, 1964; Shepard, 1962a, b; 
1972b]. 

Purposes in Analyzing Similarity Data 
I shall take the primary purpose of the analysis of such a triangular 

matrix of similarity measures to be the achievement of a concise, invariant, 
and assimilable representation of the essential pattern of structure that lies 

• more or less hidden in the given array of numerical data. By the achievement 
of an "invariant" representation of the "essential" structure, here, I mean 
to exclude representations that are heavily influenced by arbitrary features 
of the data: representations, for example, that change appreciably when 
the data are subjected to seemingly permissible transformations• Within 
this primary, general purpose, one can further discern rather different sub- 
purposes. 

Use Jor Discovery ol Hidden Structure 
One of these is the use of such an analysis for the discovery of previously 

unknown structure and, hence, for the achievement of new scientific insight. 
In the past I have even suggested that this is the single most important 
purpose. I still regard it as of possibly the greatest potential importance 
and have myself already discovered some seemingly significant patterns 
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in this way 'that were previously unknown, at least to me. One example is 
the discovery of the different dimensions that govern subjects' confusions 
among dot-and-dash signals of the Morse Code in two types of tasks that 
differed in ~he extents to which they depended upon perception and upon 
memory [Shepard, 1963a]. 

My analysis of Miller and Nicely's [1955] extensive data on acoustic 
confusions between consonant phonemes embedded in noise, also, disclosed 
some orderly patterns of substantive significance [Shepard, 1972c]. I found, 
first, that despite the 50-fold variation in overall mean level of confusion 
that resulted for different signal-to-noise ratios, the pattern of those con- 
fusions was virtually invariant. Second, this invariant pattern exhibited 
a consistent and striking departure from the parallelism that, on accepted 
distinctive-feature schemes, was expected to hold between the voiced and 
the corresponding unvoiced consonants (see Fig. 8A, below). As a further 
surprise, an analysis of data by Peters [1963] on judged similarities among 
those same consonants (but as articulated by the subject rather than heard), 
led to the finding of an entirely different pattern. The corresponding voiced 
and unvoiced consonants, which had almost never been conlused with each 
other and had therefore emerged at opposite ends of what was interpreted 
as the dimension of voicing, were in fact judged to be maximally similar 
to each other and therefore tended to map almost directly on top of each 
other. This led me to the conclusion that, in the judgmental task, the obvious 
parallelism in the articulatory structure of the set of voiced and unvoiced 
consonants induced subjects to treat the task more as an analogy task than 
as a simple similarity task. They seemed to be using their similarity judgments 
to tell us that, despite the great dissimilarity in voicing, each voiced consonant 
was most analogous to its similarly articulated unvoiced consonant. 

Use 5or Convenient, Parametric Representation 
Nevertheless, I have come to realize that most of the discoveries that 

have so far been made in this way could in principle have been made with- 
out the aid of multidime'nsionM scaling as such. I now believe that it probably 
is not the discovery of genuinely new phenomena that has been the most 
demonstrable, practical contribution of multidimensional scaling--whether 
of the recent nonmetric and metric varieties considered here or of the classical 
metric variety perfected earlier by Torgerson [1952, 1958]. Rather, it has 
been the facilitation of scientific advance in two other important ways. 

First, multidimensional scaling has provided a convenient, objective, 
and uniform way of representing the essential pattern underlying experimental 
results for purposes of communication and comparison between studies or 
researchers. Thus virtually the same, readily appreciated spatial picture 
may be obtainable despite the wide variations in nature or absolute numerical 
magnitudes of similarity data that arise from judgments, confusions, or 
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reaction times [Shepard, 1958b, 1960, 1962a; Shepard, Kilpatric, & Cunning- 
ham, in press] or, as just noted, under conditions of low, medium, or,high 
absolute levels of confusion [Shepard, 1972c]. Moreover, owing to the great 
reduction and hence averaging of data that the picture represents, the 
relations embodied in the picture may have greater statistical, reliability 
than the relations to which they mQst directly correspond in the original 
data. 

Second, multidimensional scaling has furnished a quantitative method 
of psychologically calibrating or describing in a reduced, parametric way 
a set of objects to be used in further experimental research or for the test 
of theoretical models. Examples include attempts to refine the spatial repre- 
sentation of the perceived relations among colors, word meanings, or other 
stimuli for such purposes as the investigation of visual anomalies [Helm, 
1964], the structure and function of semantic memory [Fillenbaum & 
Rapoport, 1971; Rips, Shoben, & Smith, 1973; Rumelhart & Abrahamson, 
1973; Shepard, et al., in press], the rules by which differences along individual 
underlying dimensions combine to produce an overall difference or similarity 
[Arnold, 1971; Attneave, 1950; Arable & Boorman, 1973; Shepard, 1964a], 
and the functional form of the gradient of stimulus generalization ~[Shepard, 
1958a, b; 1965] or of discriminative reaction-time [Shepard, et aL, ~in press]. 

Present Status of the Original Method o] "Analysis o] Pro:~imities" 
A number of the suggestions that I shall make for overcoming the major 

problems that I see as still confronting nonmetric multidimensional scaling 
derive directly from ideas incorporated in my original method of "analysis 
of proximities" [Shepard, 1962a, b]--particularly ideas used in the generation 
of unbiased initial configurations and in the reduction of dimensionality. 
Accordingly, a brief mention of a recent development concerning the status 
of that method may be in order. 

Although my original method generally yielded spatial configurations 
that appeared indistinguishable from those furnished by subsequent methods, 
my mathematical colleague Joseph Kruskal [1964a] soon noted that the 
precise measure of departure from monotonicity that was being minimized 
by the method was neither explicitly defined nor even known to exist in 
an explicitly definable form. Thus, despite the intuitive plausibility and 
practical success of the method, it lacked the conceptual advantage of a 
strict mathematical specification of exactly what problem was being solved. 
Moreover, in the absence of an explicitly defined loss function, general 
techniques for the minimization of such functions (notably, gradient methods) 
were not apparently applicable. The iterative method that was used con- 
sequently appeared somewhat ad hoc. 

Now however, some twelve years following my initial report of that 
method, my two former associates at the Bell Laboratories, Joe Kruskal 
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(who succeeds me as President of this Society) and Doug Carroll (who has 
just been elected to succeed him), have jointly discovered that, unbeknown 
to all of us, my original method was in fact equivalent to a gradient method. 
Moreover they have even determined that the explicit form of the measure 
of departure from monotonicity that was (implicitly) minimized is one that 
appears to be quite reasonable (Kruskal and Carroll, personal communication; 
see Kruskal [in press]). Indeed, the method of optimization that was used 
apparently turns out, with a minor alteration in a normalizing factor, to 
belong to a class of "interchange methods" that Jan de Leeuw (personal 
communication) has recently shown to offer some advantages in the avoidance 
of merely local minima. However, these recently discovered aspects of my 
original method are mentioned, here, for their inherent or historical interest 
only; they do not form the basis for any of the recommendations that I 
shall offer in what follows. 

SIX MAJOR PROBLEMS AND PROSPECTS 
FOR OVERCOMING EACH 

On the basis of extensive first-hand experience with non-metric multi- 
dimensional scaling and examination of a large number of reports by other 
investigators using this type of method, I believe the following six problems 
to be most in need of further attention. 

1. The problem of attaining the globally minimum departure from 
monotonicity (primarily the problem of avoiding merely local minima). 

2. The problem of achieving a meaningful substantive interpretation 
of the spatial configuration. 

3. The problem of determining the proper number of dimensions for 
the coordinate embedding space. 

4. The problem of avoiding undesirable loss or extraneous imposition 
of structural information (especially the so-called problem of 
"degeneracy"). 

5. The problem of determining the form of the underlying metric 
(particularly the form of the rule governing how differences along 
two or more underlying dimensions combine to yield the overall 
similarity between two objects). 

6. The problem of representing discrete or categorical structure (in 
view of the fact that the scaling model assumes a continuous under- 
lying coordinate space). 

I proceed, now, to consider each of these six problems in turn. For each 
I shall attempt, under the subheading "Problem," to define and to illustrate 
the nature of the problem and some of its aspects and then, under the sub- 
heading "Prospects," to suggest some directions in which I think a way of 
overcoming that problem might profitably be sought. 
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1. Attaining the Globally Minimum Departure ]rom Monotonicity 

Problem 
All existing methods for nonmetric multidimensional scaling use some 

variant of the steepest descent or gradient method to minimize the chosen 
measure of departure from monotonicity. This is not because gradient 
methods guarantee either quick or certain achievement of the desired min- 
imum; they do not. The choice is dictated, rather, by the present lack of a 
viable alternative for this particular class of large and nonlinear numerical 
problems. In fact the gradient method has two rather frustrating properties. 
First, convergence tends to become quite slow as a minimum point is ap- 
proached-unless, perhaps, recourse is taken to second-order methods. 
But, owing to the enormously greater demands that second-order methods 
place on computer memory, they are apt to be prohibitive, except in the 
case of a relatively small matrix of data or of an exceptionally large computer. 
Second, entrapment in an undesired, merely local minimum is not unlikely-- 
unless the initial configuration is constructed so as to fall (with sufficiently 
high probability) within the vicinity of the desired global minimum. But 
to ensure this is to solve, by some other means, a very large part of the 
problem of optimization itself. 

The problem of entrapment in merely local minima is the more trouble- 
some of the two because, rather than merely resulting in a delayed attainment 
of the absolute minimum, it can result in a failure to attain that minimum 
at all. I must confess to having underestimated the seriousness of the prob- 
lem when, in previous papers, I have glibly remarked that, if a local minimum 
is suspected, one can always try a number of random starting configurations 
and simply take, as the absolute minimum solution, the one that (repeatedly) 
turns up with the same smallest value of departure from monotonicity 
("stress"). Unfortunately, according to recent much more extensive experience 
(particularly by my former student and colleague Phipps Arable), although 
the absolute minimum is often attained within the first four or five random 
starts, to be quite safe at least 20 different starts should be used if a Euclidean 
solution is sought. (Indeed, in the case of one set of data, the globally op- 
timum Euclidean solution failed to emerge at all until the 26th random try !) 
And, as we shall see, in the case of severely non-Euclidean metrics such as 
the so-called city-block or dominance metrics, the situation is very much 
worse. 

Ironically, local minima pose especially prevalent and therefore irksome 
obstacles to the attainment of the optimum configuration in what might 
otherwise seem to be the simplest case; viz., that of a one-dimensional space. 
Theoretical analysis confirms what has become clear from practical ex- 
perience. Evidently, a point that is initially situated on the wrong side of 
some other points can gradually work its way around those other points in 
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a space of two or more dimensions but, when confined to a single line, is 
unable to move through those points owing to forces of mutual repulsion. 
Even in published studies, one-dimensional solutions have been presented 
that I can show to correspond to such merely local minima. 

A widely advocated remedy for the problem of local minima is, of course, 
the use of rationally constructed initial configurations instead of configura- 
tions generated either arbitrarily or purely at random. Generally, such 
rational starting configurations have been obtained by procedures derived 
from the classical metric approach to multidimensional scaling perfected 
by Torgerson [1952]. The hope is that such metric solutions will be sufficiently 
close to the global minimum for the nonmetric method to avoid entrapment 
in other merely local minima (cf., Young and Torgerson [1967]). Possibly 
such procedures will eventually be modified to the point where they can be 
demonstrated to be uniformly satisfactory. However, in the experience of 
my associates and myself (e.g., [Arable, 1973] and [Arable & Boorman, 1973]), 
the ability of available procedures of this type to circumvent local minima 
has so far been disappointing--particularly so in cases of non-Euclidean 
metrics, one-dimensional spaces, and the highly nonlinear relations between 
similarity and distance that are characteristic of the types of behavioral 
data with which I have often been concerned (viz., those of confusion [Shepard, 
1957b, 1972c], association [Shepard, 1957a], or reaction time [Shepard, 
et al., in press]). 

Incidentally, the prevalence of the local-minimum problem implies that 
conclusions drawn from "Monte Carlo" investigations (e.g., of stress, dimen- 
sionality, or alternative methods and programs) should be received with 
caution unless adequate assurances are provided that the reported statistics 
are not contaminated by the undetected occurrence of suboptimal solutions. 
I believe that Arable [1973] is justificd in suggesting (a) that several studies 
purportedly comparing different methods (viz., M-D-SCAL TORSCA, and 
SSA) succeeded only in demonstrating the undesirability of a certain type 
of initial configuration (viz., the arbitrary L-shaped configuration used in 
early versions of M-D-SCAL), and (b) that the stress values reported even 
in some of the most useful Monte Carlo studies [Klahr, 1969; Stenson and 
Knoll, 1969] are inflated to an unknown extent. 

Prospects 
In the absence of a promising alternative to the gradient method for 

minimizing the chosen measure of departure from good fit, the judicious 
selection or construction of the initial configuration does seem to offer the 
best hope for ensuring convergence to the desired global minimum. However, 
since it is not yet clear which of a number of possible ways of doing this will 
eventually prove most uniformly efficient and successful, several quite 
different possibilities should be pursued. Currently, these appear to divide 
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into two general classes. In one, the construction of an initial configuration 
that is sufficiently close to the globally minimum configuration is attempted 
within the space of specified, low dimensionatity in which a solution is being 
sought. In the other, a completely unbiased configuration is first constructed 
in a space that is either sufficiently high-dimensional [Shepard, 1962a] or 
non-dimensional [Cunningham & Shepard, 1974] to make this possible and, 
then, a smooth and presumably trap-free mapping of this unbiased con- 
figuration is attempted down into the specified low-dimensional target space. 

With respect to the first of these two classes, several quite different 
approaches to the construction of a rational starting configuration appear 
worthy of further exploration. Within the spirit of those already in existence, 
is the approach--apparently first considered by Torgerson himself (personal 
communication)--in which a metric multidimensional scaling procedure 
based upon a parametrically specified, smooth functional relation between 
similarity and distance is alternated with a reestimation of the parameters 
of the functional relation. Then, when this preliminary iterative process 
becomes suitably stationary, the resulting configuration can be used to 
start the iterative process of the nonmetric method itself. Alternatively, 
some combinatorial method of arriving at an optimal assignment or permuta- 
tion of the objects with respect to points in a pre-established configuration 
or ordering might prove desirable--particularly when the target space has 
only one dimension or, possibly, has a Minkowski power metric of one of the 
two limiting forms (r = 1 or r = ¢o ). Finally, there is the related possibility 
of building up the starting configuration by finding a near-optimum placement 
for each point individually as the points are added to the configuration, 
one at a time. In particular, if each successive point is allowed to migrate 
in from an extra dimension orthogonal to the space in which the rest of the 
configuration is confined, there should be no reason for any point to become 
trapped on the wrong side of any other points. 

The technique of dimensional compression that I incorporated in my 
original method of "analysis of proximities" [Shepard, 1962a] belongs in the 
second of the two above-mentioned general classes of methods for generating 
initial configurations. I t  can however be regarded as carrying out the just- 
described point-by-point inward migration--but on all n points simul- 
taneously. Such a way of looking at that method may help, moreover, to 
clarify why that method is not susceptible to entrapment in unwanted local 
minima. To start with, the n points are arranged as the vertices of a regular 
simplex in n - 1 dimensions. This is a completely unbiased configuration 
in which all n(n  - 1 ) /2  interpoint distances are equal. As iteration proceeds, 
the variance of the distances is systematically increased by stretching dis- 
tances that should be large and shrinking distances that should be small. 
The net effect is that each point migrates towards its optimum location 
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within the hyperplane of the (n -- 2) dimensional simplex defined by the 
other n -- 1 points in such a way as to instate and maintain the desired 
rank order of the distance from that point to egch of the n - 1 other points. 
Clearly, there is again no reason for any point to become trapped in an in- 
appropriate region. Experience reinforces our theoretical expectation that 
this process becomes stationary when all points have mutually gravitated 
into close proximity of the lowest dimensional hyperplane within which 
a good monotone fit to the similarity data is still possible. Rotation to prin- 
cipal axes then enables elimination of the superfluous dimensions, leaving 
us with the desired coordinates for the dimensionally-reduced and trap-free 
starting configuration. 

Although this method requires that the n points be initially embedded 
in a space of n - 1 dimensions, the efficiency of the method and its invul- 
nerability to entrapment may more than offset the disadvantage of having 
to carry along n ( n  - 1) coordinates during these preliminary iterations. 
I know of no case in which this procedure has led to a merely local minimum. 
And, illustrative of its efficiency, for the first significant set of data analyzed 
by this method (viz.,  Ekman's [1954] data on the judged similarities among 
14 spectral colors), a highly satisfactory, virtually two-dimensional starting 
configuration was achieved in just two iterations [Shepard, 1962b]. 

A final alternative, which has close conceptual relations to the approach 
just considered, is offered by the method of "maximum variance nondimen- 
sional scaling" recently developed by my student, Jim Cunningham, and 
myself [Cunningham & Shepard, 1974]. This method finds that set of (gen- 
eralized) distances among the n points such that (a) the distances satisfy 
only the metric axioms (positivity, symmetry, and triangle inequality) 
and such that (b) an appropriate balance is achieved between maximization 
of the variance of those distances and approximation to a monotone relation 
of the distances to the given similarity data. The distances are not required 
to satisfy the much stronger conditions entailed by embedding the points 
in a coordinate space of the Euclidean, Minkowskian, or any other variety. 
Owing to its coordinate-flee and nondimensional nature, the obtained repre- 
sentation is, like the high-dimensional representation just considered, not 
subject to entrapment in merely local minima. But, owing to the device 
of maximizing variance, the obtained distances tend, where possible, toward 
consistency with a low-dimensional representation. Accordingly, purely 
linear metric multidimensional scaling based upon those distances should 
yield a near-optimum initial configuration for nonmetric multidimensional 
scaling. Unfortunately, convergence has so far proved to be rather slow 
with this method. So it remains to be seen whether the efficiency of this 
approach can be improved to the point where it becomes a practical com- 
petitor of my original method of dimensional compression. 
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2. Achieving a Meaning]ul Substantive Interpretation 

Problem 

The substantive interpretation of a spatial configuration obtained by 
multidimensional scaling is usually a matter of paramount importance. 
Typically, in fact, such an interpretation is the end result which the in- 
vestigator is seeking and which, to the extent that it is meaningful and 
enlightening, justifies the often rather costly computations from which 
it derives. In addition to its importance for its own sake, moreover, the 
interpretability of the configuration often plays a crucial role in determining 
whether the obtained solution is valid and, particularly, whether it has 
been embedded in a space of-the appropriate number of dimensions. 

In view of its importance, it is distressing to see that this matter of 
interpretation is still sometimes neglected or mishandled in some way. In 
some cases, a spatial configuration of some number of dimensions has simply 
been presented without any compelling interpretation. For, even when an 
acceptably small measure of departure from monotonicity (stress) is achieved, 
in the absence of such an interpretation one can not determine (a) that the 
number of dimensions retained is appropriate or (b) that the configuration 
itself is valid (and not heavily determined by some mixture of random 
fluctuations in the data, degeneracy, and/or a merely local minimum). 

In the worst cases, an overriding preoccupation with the reduction 
of stress to some desired level has led to solutions in four or more dimensions 
(a) where the configuration can not be visually apprehended and is probably 
not statistically reliable anyway, and even (b) where attempts at substantive 
interpretation, if any, have often been based solely on the coordinates for 
the points as they are printed out with respect to the unrotated axes of 
the solution. Such an approach to interpretation fails to appreciate two 
facts: First, except in certain special cases of non-Euclidean metrics, (or 
of methods of individual difference scaling [Carroll, 1972a] beyond the scope 
of this paper), the axes of the obtained configuration are entirely arbitrary. 
And second, even when appropriately rotated, axes do not nacessarily offer 
the most interpretable features of a configuration. 

Prospects 
What seems to be most immediately needed, are efforts to educate 

potential users of multidimensional scaling concerning such matters as 
substantive interpretation, rotation of axes, and minimization of stress 
versus minimization of dimensionality. This paper is in part intended as 
one such effort. Some specific suggestions that may be helpful to some users 
are the following: First, always try for a solution in a space of three or, 
preferably, fewer dimensions where the spatial structure of the entire con- 
figuration can be seen and interpreted directly (rather than through the 
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coordinates of the points on arbitrary axes). Second, when a representation 
in three or more dimensions can be shown to be both reliable and desirable, 
try objective methods for finding the most interpretable, rotated axes through 
the resulting high-dimensional space. (An excellent survey of such objective 
methods has been prepared by Carroll [1972b]. Less complete and up-to-date, 
though perhaps more readily available, is my own brief overview [Shepard, 
1972b, pp. 39-43].) Third, search for any interpretable features of the spatial 
configuration--including clusters and circular orderings, as well as the linear 
ordering provided by (rotated) rectilinear axes. 

Some concrete examples may help to illustrate the usefulness of searching 
for interpretable features other than axes. In fact the first significant applica- 
tion of nonmetric multidimensional scaling (again, my reanalysis of Ekman's 
[1954] data on 14 spectral colors, [Shepard, 1962b]) led to a quasi-circular 
configuration (similar to that presented in Fig. 7D) in which there was a 
perfect agreement between the ordering of the points around the circle and 
the ordering of the corresponding colors with respect to wave length. In 
this and some subsequent, quite different applications, interpretation in 
terms of a circular dimension (akin to Guttman's [1954] "circumplex") 
seems as inviting as interpretation in terms solely of rectilinear dimensions. 

In Fig. 1 I exhibit the two-dimensional result of a nonmetric analysis 
of data (which I had originally collected in 1953) on the strengths of mental 
associations among 16 familiar kinds of animals. Subjects were asked simply 
to list as many kinds of animals as they could think of in ten minutes For 
the 16 most frequently listed kinds, I used, as a measure of the associative 
distance between the two items in each pair, a nonlinear average of the 
numbers of intervening items between those two items in the lists returned 
by the individual subjects. 

In a first attempt t~ analyze association data by multidimensional 
scaling, I then applied the metric method described by Torgerson [1952, 1958] 
to these distance-like numbers in order to obtain a spatial representation 
for the 16 kinds of animals [see Shepard, 1957a]. At that time I obtained 
a three-dimensional representation in which [following Osgood, Suci, and 
Tannenbaum 1957] I tentatively interpreted the three axes, after appropriate 
rotation, as dimensions of size, potency, and activity. However, even though 
similar three-dimensional configurations were independently recovered from 
the data for two random subsets of the subjects, and even though subsequent 
studies have independently come up with a dimension of size and a dimension 
(of "predacity") that is obviously related to potency [see Rips, et al., 1973], 
I did not at the time feel that the interpretations of the three axes sufficiently 
enlightening to warrant publication of the three-dimensional spatial con- 
figuration itself. 

More recently, I have reanalyzed the very same set of measures of 
associative distance by nonmetric methods of multidimensional scaling and 
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hierarchical clustering (using, specifically, M-D-SCAL [Kruskal, 1964a, b], 
HICLUS [Johnson, 1967], and embedding the clustering into the spatial 
representation as advocated in Shepard [1972c]). The two-dimensional 
solution (Fig. 1) provided a satisfactory monotone fit to the association 
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FIGURE l 
Two-dimensional spatial representation of the concepts of 16 animals, with embedded 

hierarchical clustering, based upon measures of association from a free-recall experiment 
by Shepard [1957a]. 
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data and, also, was consistent with the (nondimensional) clustering result--as 
is indicated by the fact that the obtained clusters could be uniformly repre- 
sented by smooth, convex, nonoverlapping contours. The principal point 
that I wish to make here, however, is that the way in which the points repre- 
senting the kinds of animals cluster together in the spatial representation 
appears to be far more readily and eompellingly interpreted than the order 
in which those points project onto any axes passing through this spatial 
representation. In some cases, the specific interpretative label printed in 
the figure may be open to dispute; e.g., the label "Jungle Beasts" for ]ion, 
tiger, and elephant. But in every case the concept--as opposed to the verbal 
label--is, I hope, clear. Other examples in which clusters as well, possibly, 
as axes seem particularly susceptible to substantive interpretation will be 
presented in connection with later issues (see Figs. 8 and 13). 

3. Determining the Proper Number o/Dimensions 

Problem 
In my opinion, widespread practices and recommendations concerning 

the determination of dimensionality are tending to detract from the use- 
fulness of multidimensional scaling. I believe that users, more often than 
not, are inclined to err in the direction of extracting too many dimensions. 
This inclination seems to be attributable to certain prevalent misconceptions 
about the nature of nonmetric multidimensional scaling and about the 
implications of Monte Carlo studies. 

First, many users tend to place undue emphasis on the numerical value 
of the measure of departure from monotonicity (stress) to the virtual ex- 
clusion of much more important considerations of the statistical stability 
and substantive interpretability of the obtained configuration. In part, 
this may stem from an unfortunate tendency of users to accept, a bit too 
literally, the evaluative labels ("excellent," "good," "fair," and "poor") 
that Kruskal [1964a] once associated with particular numerical levels of 
stress. (Nobody likes to submit for publication a result that is only "fair" 
or "poor"!) Second, Monte Carlo studies, which generally recommend the 
extraction of more rather than fewer dimensions, are often limited in one 
or both of two respects: (a) they place excessive emphasis on approximating 
an underlying (artificially constructed) configuration (which the unprocessed 
similarity data themselves already do quite well !), while they disregard the 
more important considerations of stability and accessibility to substantive 
interpretation, and (b) they report mean stress values that in some cases 
may be inflated owing to the undetected occurrence of suboptimal solutions. 
Third, there has been a pervasive failure, even among otherwise sophisticated 
investigators, to recognize the guises under which a basically one-dimensional 
case can appear to the unwary to be two- or even three-dimensional. 
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As just one illustration of this last phenomenon, I present in Fig. 2A 
a two-dimensional representation that Levelt, Van de Geer, and Plomp 
[1966] obtained by a nonmetric analysis of the judged similarities among 15 
aurally presented musical intervals. They attempted (without striking 
success, I feel) to give substantive interpretations to the two orthogonal 
dimensions of this representation and even to the third dimension of a three- 
dimensional solution as well. (Their interpretive effort included the fitting 
of a parabola--displayed, here, by the dashed curve--to the two-dimensional 
configuration.) To me, however, two aspects of this solution strongly suggest 
that the data should be represented in a one-dimensional space. First, the 
points fall essentially on a C-shaped curve that is very similar to the semi- 
circular configuration that, under the permissible monotone transformations 
of the interpoint distances is equivalent to a one-dimensional straight line 
[Shepard, 1962a, p. 130]. And second, the ordering of the points around this 
curve (as indicated by the solid curve terminating in an arrowhead) agrees 
nearly perfectly with an obvious physical property of the intervals--namely, 
their separation in terms of number of intervening half-tones on the musical 
scale. 

A completely independent solution, shown in Fig. 2B, is based upon 
similarity data that a former student of mine, Christopher Wickens, collected 
for his 1967 undergraduate honors thesis at Harvard before either of us 
knew of the study by Levelt et al. Although Wickens' experiment included 
only 12 of the 15 intervals investigated by Levelt et al., the overall C-shaped 
nature of the two configurations in two-dimensional space is quite striking. 

In analyses of many different sets of data that were known to be basically 
one-dimensional, I have found that two-dimensional solutions, when at- 
tempted, characteristically can assume either the simple C-stmpe (illustrated 
in Fig. 2) or the inflected S-shape, and that solutions in higher-dimensional 
spaces are even more various. (Note for example that, just as a semicircle 
in two dimensions is monotonely equivalent to a straight line in one, a helix 
in three dimensions is, in the same sense, monotonely equivalent to both.) 
Evidently, by bending away from a one-dimensional straight line, the con- 
figuration is able to take advantage of the extra degrees of freedom provided 
by additional dimensions to achieve a better fit to the random fluctuations 
in the similarity data. In some published applications, moreover, the pos- 
sibility of the more desirable one-dimensional result was mistakenly dismissed 
because the undetected occurrence of a merely local minimum (which is 
especially likely in one-dimension) made the one-dimensional solution appear 
to yield an unacceptibly poor monotone fit and/or substantive interpretation. 

Prospects 
With the exception of my own original method, all methods of nonmetrie 

multidimensional scaling require the user to specify, in advance, the number 
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of dimensions of the space in which the solution is to be sought. When in 
doubt, the user must obtain solutions, separately, in spaces of different 
numbers of dimensions (perhaps 3, 2, and 1) and then use criteria such as 
goodness of fit, statistical stability, and substantive interpretability to 
choose among the resulting solutions [Shepard, 1972a, pp. 9-10]. In order 
to take maximum advantage of this approach and to avoid the specific 
pitfalls mentioned above, I believe it to be highly desirable (a) to recognize 
the importance of the criteria of stability and interpretability (including 
the special advantages of visually accessible two-dimensional representations 
and the embedded clusterings to which they particularly lend themselves), 
(b) to strive toward more careful Monte Carlo studies and, hopefully, more 
illuminating mathematical analyses, and (c) to be vigilant for configurations 
(especially C-shaped or S-shaped ones in two dimensions) which strongly 
indicate the attainability of an acceptable one-dimensional solution. 

The possibility of a one-dimensional solution can also be determined 
by an examination of the matrix of similarity data itself. If and only if 
the underlying structure is truly one-dimensionai, a permutation of the 
rows and columns of the matrix can be found such that, except for random 
fluctuations, the entries decrease monotonically with distance from t h e  
principal diagonal (as in the generalized "simplex" of Guttman [1955]). 
Fig. 3 displays such a premuted version of the matrix of data reported by 
Levelt, et al. [1966] and upon which the spatial representation in Fig. 2A 
was based. To assist visualization, the heaviness of the cell entries has been 

I A .-T. t3 

1 / .... Z / \  ~ / ' ,  

FIGURE 2 
Two-dimensional spatial representations of musical intervals, obtained by Levelt, 

Van de Geer, and Plomp [1966] (A) and by Wickens (B), on the basis of independent sets 
of judged similarities. 
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chosen, here, in accordance with their numerical magnitudes. Notice that, 
except for minor fluctuations in seemingly isolated cells, these cell entries do 
tend to shade off quite uniformly as we move from the diagonal to the lower 
left corner. This is in contrast to the matrix of similarities among spectral 
colors reported by Ekman [1954], in which the similarities systematically 
increased again toward the lower left corner and in which monotonicity 
could only be maintained by a two-dimensional configuration in which the 
two ends of the C-shape (corresponding to red and violet) necessarily ap- 
proached each other to form the familiar "color circle." (See Shepard [1962b] 
and the present Fig. 7D.) 
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FIGURE 3 
Rearranged version of the matrix of similarities among musical intervals obtained by 

Levelt et al. [1966]. 
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All of the preceding recommendations are with respect to the (almost 
universally adopted) approach of obtaining solutions in spaces of specified 
dimensionalities and then using various external criteria to choose among 
the resulting configurations. An entirely different approach, attempted in 
my original method [Shepard, 1962a], is to use constraints internal to the 
data themselves to determine the proper number of dimensions objectively. 
I still believe that such an approach is feasible, particularly in cases of 
relatively noise-free data, and that it avoids a number of problems, par- 
ticularly the just-considered problems of inherently low-dimensional con- 
figurations appearing as curved structures in higher-dimensional spaces 
and of entrapment in merely local minima. 

The first compelling demonstration of the possibility of determining 
the true number of underlying dimensions objectively was that illustrated 
in Fig. 2 of my original report [Shepard, 1962b, p. 223]. That figure showed 
that, by means of the above-mentioned device of stretching large distances 
relative to small, an initially regular simplex in 14 dimensions flattened 
down into a stationary configuration of 15 points that was virtually two- 
dimensional and essentially identical to the true underlying structure from 
which the input data were monotonically derived. And, again, this process 
of dimensional compression was sufficiently effective that the true number 
of underlying dimensions could be estimated after only three iterations. 

Even more striking demonstrations of the potential power of this ap- 
proach have arisen from subsequent attempts to extend the approach to 
permit the determination of the "intrinsic dimensionality" of curved 
structures in general [Bennett, 1969; Shepard & Carroll, 1966]. Fig. 4 pre- 
sents the results of two tests of a method of this type, for "conformal re- 
duction of nonlinear data structure," that I developed at the Bell Laboratories 
with the collaboration of Jih-Jie Chang. The method uses essentially the 
same sort of differential stretching of distances as my original 1962 method 
but differs from that method in that the requirement of monotonicity between 
the original data and the final distances is enforced only locally rather than 
globally. The method is quite similar to that developed by Bennett [1965, 
1969] except for the definition of the local neighborhood around each point. 
In our method each neighborhood is defined (a) with respect to distances 
between points in the (evolving) configuration rather than with respect to 
the (fixed) set of data, and (b) according to an exponential-decay weighting 
function of these distances rather than according to an arbitrary discontinuous 
cutoff. 

As can be seen from the nine successive stages of the iterative process 
shown in Fig. 4A, the abandonment of global monotonicity permitted a 
configuration of 19 points in the form of a circle with a gap (similar to the 
configurations in Figs. 2 and 7D and to Guttman's [1954] "circumplex") 
to open out into a straight line. The iterative process achieved stationarity 
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with this perfectly one-dimensional configuration; there were no further 
changes with continued iteration. A similar evolution is shown in Fig. 4B 
for an intrinsically two-dimensional configuration of 49 points on a sphere. 
As can be seen from the portrayed two-dimensional projections, the initially 
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FIGUm~ 4 
Successive stages in Shepard-Chang conformal reduction of 19 points on the perimeter 

of a circle (A) and of 49 points on the surface of a sphere (B) into flat spaces of the  appro- 
priate  intrinsic dimensionalities. 
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spherical configuration (1), flattened out into shapes successively resembling 
a deep bowl (2), a parabolic microwave antenna (3), a shallow platter (4), and 
a perfectly flat disk (5). The striking degree of flatness of this final, stationary 
configuration is exhibited more clearly in view 5a, which shows the final 
configuration (of step 5) rotated into an edge-on orientation. 

The maintenance of monotonicity, locally, ensured that the flattening 
in both cases, despite the global distortion, preserved local structure and 
hence was essentially "conformal." This is attested to by the evenness of 
the spacing of the points in the final configuration (9) that evolved from the 
19 points on the circle, and by the systematically expanding regularity of 
the final configuration (5) that evolved from the 49 points on the sphere. 
This last regularity is most evident in view 5b, which shows the same con- 
figuration (of views 5 and 5a) rotated into a flat-on orientation. (The views 
in this figure are reproduced from the Shepard-Chang computer-generated 
movie "Illustrations of Conformal Mapping" which was first shown during 
an invited address before the 1966 meeting of the American Psychological 
Association [Shepard, 1966a].) 

In the two examples presented in Fig. 4, the data were error free and 
the usual requirement of global monotonicity was relaxed. Nevertheless, 
the success of this objective method for dimensional reduction, together 
with the success of my original method from which this method derives 
(and in which global monotonicity was required with real and therefore 
fallible data) encourages me to believe that true underlying dimensionality 
is in principle determinable by automatic, objective methods. 

~. Avoiding Loss or Imposition o] Structure 

Problem 

Ironically, although we always seek to minimize the chosen measure of 
departure from mofiotonicity, special difficulties are apt to arise whenever 
the stress is zero or close to zero. Zero-stress solutions, in particular, are 
generally either nonunique--and to that extent introduce some degree of 
extraneous structure that is not contained in the data, or degenerate--and 
therefore fail to preserve some structure that is contained in the data. The 
problem of nonuniqueness is the less troublesome. One can always evaluate 
the degree of uniqueness of a solution by using several different starting 
configurations. Moreover, what the finding that substantially different 
solutions are obtainable with the same zero stress really indicates is that 
either the number of objects being scaled should be increased or the number 
of dimensions of the embedding space should be decreased. The problem of 
degeneracy, however, is sometimes bothersome enough to motivate a search 
for methodological innovations. 
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As a rough index of the n o n d e g e n e r a c y  of a solution, I would propose 
the ratio of the number of distinct values of distances among the n points 
to the total number of distances (viz.,  n (n  - 1)/2).  Thus, if no two distances 
are tied we have a totally nondegenerate solution, while if all n ( n  - 1)/2 
distances are tied we have a totally degenerate solution (namely, the regular 
simplex in n - 1 dimensions). Typieally, because we require a solution in 
fewer than n - 1 dimensions, a zero-stress solution is n o t  totally degenerate 
by this index, and the distances assume one of two or three different values. 

As an illustration, Fig. 5A shows a degenerate solution that occurred 
when I analyzed data long ago sent to me by A. Howard, on the judged 
similarities among eight gustatory stimuli. The stimuli collapsed into the 
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FIGUI~F 5 

Degenerate (A) and nondegenerate (B) configurations for eight gustatory stimuli, 
based upon the "nonmetrie" and "metric" assumptions that the relation of the similarity 
data to the interpoing distances has the form of a merely monotone function (C) or the 
form of a polynomial of low degree (D), respectively. 
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three vertices of an equilateral triangle and, so, there were just two values 
of distance: zero, for pairs of points located at the same vertex, and a fixed 
larger value, for pairs of points located at two different vertices. This de- 
generacy arose because the stimuli divided into three groups such that all 
of the similarities within any group were greater than any of the similarities 
between any two groups. The consequence is that much structural information 
is lost in the spatial solution. We learn only that the stimuli strongly cluster 
into the three groups; we learn nothing about either the relationships among 
these three groups or the relationships among the stimuli within any one 
of these groups. Correspondingly, the function relating the given similarities 
and the recovered distances assumes the implausible and uninformative 
shape of the single, discontinuous step shown in Fig. 5C. Although the fit is 
perfect (i.e., the stress is zero), the representation is too degenerate to be 
of much use. 

In Fig. 6 1 display all maximally degenerate four-point configurations in 
two dimensions; i.e., all two-dimensional configurations in which the dis- 
tances among the four points take on only two distinct values. The smaller 
distances are represented by the heavier lines connecting pairs of points-- 
unless those distances are zero, in which case the two or three coincident 
points are represented by concentric circles. (These configurations may be 
regarded as two-dimensional analogues of the one-dimensional "corner 
sequences" defined by Abelson and Tukey [1959].) Of the many strongly 
degenerate two-dimensional configurations that I have obtained in the 
analysis of real and artificial data, regardless of the number of points all 
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FmuRE 6 
The nine degenerate four-point configurations in two dimensions, for which the six inter- 

point distances take on just two distinct values (as indicated along the bottom). 
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have taken one or another of the nine forms shown in Fig. 6. In cases of 
extreme degeneracy, apparently, the additional points usually collapse ,onto 
these same few vertices. Thus, the eight-point configuration shown in Fig. 5A 
corresponds to the equilateral triangular degeneracy labeled "I" at the 
left in Fig. 6. Therefore, whenever the points in an obtained solution cluster 
close to the vertices of one of the highly symmetric configurations exhibited 
in Fig. 6, one should suspect the occurrence of a rather marked degeneracy. 
In practice, the true extent of this degeneracy is often not immediately obvious 
because the criterion (e.g., of low stress) for terminating the iterative process 
is attained before the clusters complete their collapse into the vertices. Even 
so, the tendency of the monotonicity diagram (see Fig. 5C) toward a dis- 
continuous function of one or two steps will usually suffice as a signal of 
impending degeneracy. 

Closely related to the problem of true degeneracy, in which a large 
proportion of the interpoint distances are tied, is the problem of quasi- 
degeneracy, in which many of the monotone values being brought into a 
mutual best fit with the distances, if not the distances themselves, are tied. 
Actually, some degree of quasidegeneracy in this sense is always present 
in solutions obtained by nonmetric methods (although it may be negligible 
when the number of points is large and the data are sufficiently error-free 
[Shepard, 1966b]). It  shows up in the zigzag or step-like shape that is char- 
acteristic of the best-fitting monotone functions obtained by, nonmetric 
multidimensional scaling (see Fig. 7A). Roughly, the more ipronounced 
the individual steps appear, the greater is the quasidegeneracy of the solution. 

To the extent that we are interested in the functional form of the rela- 
tion between the similarity data and metric distances (as in the study of 
stimulus generalization), such quasidegeneracy is undesirable for two related 
reasons; one substantive and one statistical. Substantively, the step-like 
function is unappealing if, as I assume, we generally believe that the true 
underlying relationship has some smooth functional form (such as the ex- 
ponential decay form expected under some circumstances on theoretical 
grounds [Shepard, 1958a]). Statistically, the zigzag function is unreliable 
in the sense that, when we analyze a new set of similarity data for the same 
set of objects, we find that the individual zigs and zags of the function shift 
about in a quite unpredictable manner. The presumption, therefore, is that 
these individual zigs and zags do not represent any reliable or substantively 
meaningful phenomenon but, rather, reflect the attempt of the large number 
of degrees of freedom of a merely monotone function to fit the random 
fluctuations peculiar to each individual set of data. 

Prospects 
In order to minimize the likelihood of true degeneracy or of marked 

quasidegeneracy, researchers should try, whenever possible, to select objects 
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for nonmetric scaling (a) that are not obviously grouped into a few psy- 
chologically compact clusters, and (b) that are not fewer than about ten in 
total number, for a two-dimensional solution, or more, for a higher-dimensional 
solution [Shepard, 1966b]. (A distressing number of two- and even three- 
dimensional solutions have been published in which, despite the inclusion 
of only six to eight obiects, no evidence is provided that the configuration 
has a reasonable degree of metric determinacy and is not a prematurely 
arrested case of convergence toward a degeneracy.) Whether or not it is 
actually included in the published report, the monotonicity diagram (Figs. 
5C and 7A) should be examined for step-like evidences of degeneracy and 
the results reported. 

When true degeneracy does occur (as illustrated in Figs. 5A and 6), one 
currently has recourse to one or both of two further kinds of analysis in 
order to achieve a representation that preserves more of the structure in 
the similarity data. One can reapply the nonmetric analysis, separately, 
to the submatrix of similarities for the objects corresponding to each collapsed 
cluster' containing enough points to make this worthwhile. If this does not 
lead to a further (hierarchically deeper) degeneracy, additional information 
can thereby be recovered about the internal structure of such a subset-- 
though not about the relation of that subset to any other. Alternatively, 
if a representation of the overall structure of the entire set of objects is still 
desired, one must resort to metric methods, which depend upon stronger 
assumptions concerning the functional form of the monotone relation between 
similarity and distance. Sometimes, a combination of both approaches is 
quite successful. (See, for example, Fig. 18 and accompanying discussion in 
Shepard, et al. [in press].) 

The present Figs. 5B and 5D illustrate the use of stronger, metric 
assumptions to overcome degeneracy. Here, the very same set of data already 
analyzed nonmetrically in Figs. 5A and 5C were reanalyzed using a program 
for "polynomial fitting in the analysis of proximities" that I developed in 
an early attempt to deal with the problem of degeneracy [Shepard, 1964b]. 
(Subsequently, of course, Kruskal and others have generalized their programs 
to provide for the fitting of polynomial or other parametric functions, also.) 
Notice that, although the fit is no longer perfect (as it should not be with 
fallible data), the spatial configuration preserves structural information 
about all eight of the stimuli (Fig. 5B), and (apart from a minor deviation 
from monotonicity, to be considered shortly) the relation between similarity 
and distance approximates a more plausible, smooth functional form-- 
specifically, in this case, a quadratic (Fig. 5D). 

The fitting of smooth, parametric functions rather than jagged, merely 
monotonic functions also permits us to circumvent the lesser problem of 
quasidegeneracy. This is illustrated in Fig. 7. The upper two panels (A 
and B) are both based upon measures of the tendency of pigeons trained 
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to respond to each of a number of spectral colors to generalize that response 
to each of the other colors. These data, collected by Guttman and Kalish 
[1956], are of the sort for which the question of the functional form of the 
"gradient of stimulus generalization" is of central interest [Shepard, 1965]. 
From this standpoint, the function obtained by applying my polynomial- 
fitting program--in this case an exponential-like quartic curve (Fig. 7B) 
seems to be both substantively more plausible and statistically more reliable 
than the function obtained by nonmetric multidimensional scaling (Fig. 7A). 
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Measures of stimulus generalization between spectral colors, obtained for pigeons by 
Guttman and Kalish [1956], plotted against interpoint distances obtained by multidimen- 
sional scaling on the assumption of a merely monotone (A) or a polynomial (B) relation 
between similarity and distance; and a plot for a similar polynomial analysis of Ekman's 
[1954] judged similarities among 14 spectral colors (C) together with the quasicircular 
spatial configuration obtained by that analysis (D). 
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The lower panels (C and D) present a reanalysis of Ekman's [1954] data 
on the similarities among spectral colors as judged by human subjects. The 
quasicircutar configuration obtained for the 14 colors by means of the poly- 
nomial-fitting program (Fig. 7D) is virtually identical to the nondegenerate 
one I originally obtained by a nonmetric analysis [Shepard, 1962b, p. 236]. 
Moreover, the obtained relationship between judged similarity and Euclidean 
distance between points in this configuration (Fig. 7C) exhibits a strikingly 
good fit to a smooth and plausible monotone decreasing function. Evidently, 
such a metric method of analysis can yield quite satisfactory results whether 
or not there is a problem of degeneracy or of quasidegeneracy. 

One drawback of polynomial-fitting programs, of course, is that it is 
difficult to ensure that the resulting polynomial will be monotone over the 
range covered. Thus, a departure from monotonicity is evident in Fig. 5D 
and, although not included in the figure, a nonmonotonic upswing occurs 
just beyond the right-hand border of Fig. 7B. Kruskal (personal communica- 
tion) has suggested the strategy of simultaneously minimizing departures 
from monotonicity and from a polynomial of specified degree (a possibility 
that is provided in recent versions of his program, e.g., M-D-SCAL 5M). 
But, even with this strategy, I have found that the fitted polynomial can 
still become markedly nonmonotone in the range of the data. 

In order to ensure monotonicity, one can of course iterate into a best 
fit with a parametric function of some other general type that can be more 
easily constrained to strict monotonicity. Since confusion and generalization 
data seem in general to decay exponentially with interstimulus distance 
[Shepard, 1958, a, b, 1965, 1972c], Jih-Jie Chang and I developed a gradient 
method for optimally adjusting, simultaneously, the coordinates of a spatial 
configuration and the parameters of an exponential decay function relating 
the similarity data to the interpoint distances [Chang & Shepard, 1966]. 
In Fig. 8 the results of applying this exponential-fitting method to Miller 
and Nicely's [1955] data on confusions among 16 consonants (A) is contrasted 
with the results of a nonmetric (M-D-SCAL) analysis of the same data (B). 
The closed curves show the embedded results of hierarchical clustering 
[Johnson, 1967] applied to the same data, as previously explained for Fig. 1. 
(See Shepard [1972c] for the full substantive interpretation of this configura- 
tion.) 

Note that, in the configuration (B) obtained by the nonmetric analysis, 
only, there is an inconvenient partial degeneracy in which several points 
collapse together. Correspondingly, the fitted monotone function obtained 
by the nonmetric analysis manifested, again, a crude step-like shape (similar 
to that shown in Fig. 7A), whereas the fitted exponential function obtained 
by the metric analysis achieved an excellent fit (even better than that shown 
in Fig. 7B) and, in fact, accounted for some 99% of the variance of the 
confusion measures of similarity [Shepard, 1972c, p. 77]. Nevertheless, the 
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F1GURE 8 
Two-dimensiomul spatial representations of 16 consonant phonemes obtaizmd by 

multidimensional scaling on the assumptions that the relation of the confusion measures 
of similarity (obtained by Miller and Nicely [1955]) to the iaterpoint distances is exponen- 
tial (A) or merely monotone (B), together with embedded hierarchical clusterings 
[see Shepard, 1972c]. 

exponential-fitting method is undesirably limited for general purposes, 
since many other types of similarity or dissimilarity data are not expected 
to bear an exponential relation to distance. 

What may have seemed most remarkable in my original demonstrations 
of nonmetric scaling [Shepard, 1962b] was the extent to which a tightly 
constrained metric structure can be recovered from an analysis of merely 
ordinal relations in the data [cf., Shepard, 1966; Young, 1970]. It may seem 
odd, therefore, that I am now recommending consideration of methods that 
depend upon more than merely ordinal relations. Nevertheless, from the 
practical standpoint of trying to obtain results that are optimally meaningful 
and invariant under replication of the data as well as under reasonable (and 
therefore smooth) sorts of monotone transformations of the data, such a 
recommendation seems appropriate. The problem that remains, however, 
is to impose the desired condition of smoothness in some general and non- 
arbitrary way without having to specify a particular functional form--such 
as the polynomial (which can become nonmonotonic) or the exponential 
(which is often too restrictive). 

Recently, with the collaboration of a student in computer science, 
Glen Crawford, I have been exploring a new approach to the problem of 
fitting functions which seems to provide a very natural and well-defined 
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way of introducing general conditions such as convexity, concavity, or 
even "smoothness," as well as the condition of monotonicity. For each 
value xl of an independent variable x (where the subscripts are assigned 
so that xl < x2 < ". .  < xn), we seek a theoretical estimate ~)~ tha t  best 
fits the corresponding observed value y~ such that the theoretical values 
~, , 92 , " "  , ~ satisfy certain explicitly prescribed constraints on their 
weighted first- and second-order differences as required to ensure that the 
sequence of values is monotone, is convex or concave, and/or is locally 
linear, as desired. The method that we are currently testing (which we call 
"least-squares regression to a constrained-difference function") uses a gradient 
method with penalty functions to obtain a least-squares solution subject 
to the prescribed constraints. 

The results of one test application of this method are displayed in 
Fig. 9. In Fig. 9A the best-fitting monotone decreasing fu.r~ction is indicated 
for a set of artificial data (a quadratic with added ran4om error). The given 
data are represented by the open circles and the fitt~2d function is represented 
by the connected small solid circles. Note, as "before, the characteristically 
step-like shape of the best-fitting monot~Tle function. By contrast, Fig. 9B 
shows that, as soon as we use the ~ethod to impose just the condition of 
convexity in addition to the co.v~{lition of monotonicity, the function fitted 
to the same data becomes ~ery smooth. Moreover, the convex function also 
achieves a much closer ~J~ to the true underlying (quadratic) function. 

We plan to use this approach to curve fitting as the basis for a method 
of multidimensional scaling in which one will not have to assume a particular 
functional form for the relation between distance and similarity, but in which 
one can impose some further constraint beyond mere monotonicity (in order 
to obtain a functional relationship that is more plausible, more reliable, 
and less subject to degeneracy). In the most direct extension to multidimen- 
sional scaling, the fixed similarity values, si~ , would be treated as the values 
of the independent variable x, while the to-be-varied distances, d~i , would 
be treated as the values of the dependent variable y. However, other pos- 
sibilities, e.g., turning the regression around, would also offer advantages, 
including that of being able to maximize the variance of the given similarity 
data accounted for by the spatial representation. 

5. Determining the Form of the Underlying Metric 

Problem 
In addition to permitting the recovery of metric structure from merely 

ordinal data, the iterative procedures introduced in the original methods 
of nonmetrie multidimensional scaling made possible the fitting of repre- 
sentations based upon non-Euclidean metrics. (See [Shepard, 1962b, p. 224] 
and, for the first actual implementation of this possibility, [Kruskal, 1964a, b].) 
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Identical artificially generated scatterplots with the best-fitting monotone decreasing 

function (A), and with the best-fitting monotone decreasing and convex function obtained 
by the Shepard-Crawford method of regression to a constrained difference function (B). 
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Methods of this type are therefore used in the continuing investigation into 
the conditions under which psychological similarity is determined by alterna- 
tive Euclidean or non-Euclidean rules of combination of differences along 
underlying psychological dimensions [see, e.g., Arnold, 1971; Attneave, 1950; 
Cross, 1965; Hyman & Well, 1967, 1968; Shepard, 1964a; Shepard & Cermak, 
1973; Thomas, 1968; Torgerson, 1958]. Unfortunately, difficulties both of a 
persistent practical sort and of a recently discovered theoretical nature 
raise doubts about the ways in which these methods are usually used for 
this purpose. 

Methods of nonmetric multidimensional scaling generally seek Minkowski 
power-metric representations by iterating to a best fit after specifying a 
value for the power, r (where the most widely discussed metrics--the so-called 
"city-block," "dominance" and, of course, Euclidean varieties--correspond 
to the limiting values of r -- 1, r = co, and the intermediate value of r = 2, 
respectively). Thus~ if the appropriate value of r is (as in the typical case) 
not known in advance, the user is faced with the tedious and costly procedure 
of obtaining solutions, separately, for a number of representative values of 
r spaced out between 1 and some very large value. The user must then 
decide among the resulting set of solutions in some way (presumably on the 
basis of which solution achieves the lowest residual stress [e.g., Kruskal 
1964a, p. 24]). 

From the practical standpoint, the cost of obtaining solutions separately 
for many different values of r is apt to become prohibitive because problems 
of slow convergence and local minima are much more severe in the case 
of these non-Euclidean metrics. On the basis of his extensive attempts to 
obtain non-Euclidean solutions, Arable (personal communication [see, also, 
Arabie& Boorman, 1973]) reports that, in three or more dimensions, random 
starting configurations are essentially useless. For this case, he recommends 
resorting to the incompletely validated strategy--apparently suggested, 
independently, by Arnold [1971] and Kruskal (personal communication)--of 
gradually working out from the Euclidean solution (for r = 2), by using 
the final configuration obtained for each value of r as the initial configuration 
for the next larger (or smaller) value of r. In the case of two dimensions, 
by contrast, Arable reports that this (Arnold-Kruskal) strategy is generally 
unsuccessful and that one should therefore use random initial configurations 
(with perhaps as many as 100 different starts being required for each value 
of r in order to ensure attainment of the global minimum!). 

Quite apart from this essentially practical problem, my own recent 
theoretical investigations have convinced me that the generally accepted 
practice of taking, as the correct metric, the one which yields the lowest 
residual departure from monotonicity is unfounded and probably leads to 
erroneous conclusions. Such a practice is based on the assumption, never 
explicitly justified, that values of stress are directly comparable across 
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different values of r. I first came to question this assumption as a result of 
puzzling over the tendency (first noted by Arnold [1971] and, then, by Arabic 
and Boorman [1973]) of the points in spatial configurations conforming to 
the city-block or the dominance metric to be themselves disposed in a manner 
resembling the shape of the "unit sphere" for those particular metrics; 
that is, resembling the perimeter of a diamond or square, respectively, (in 
two dimensions) or the surface of an octahedron or cube, respectively, (in 
three). This led to the discovery of the purely geometrical fact that degen- 
eracies and, hence, low values of stress are more prevalent for values of r 
close to 1 and, particularly so, for values of r approaching co. 

The special nature of these extreme metrics (and a possible explanation 
for the puzzling phenomenon noted by Arnold and by Arabic and Boorman) 
is illustrated in Fig. 10, for the case of the city-block metric in two dimensions. 
In this case, the unit circle (i.e., the set of all points equidistant from a 
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FIGURE 10 
Demonstration of the prevalence of tied distances between points on an equidistance contour 

in the city-block metric. 
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given point) has the form of a diamond (or 45 ° square), as indicated by any 
one of the concentric dashed contours surrounding the point P. This implies 
that, for every point P, situated on a closed curve of the particular shape 
indicated by the solid curve, half of the remaining points on that same curve 
can be divided into three subsets (indicated by the heavier segments, a, b, 
and c) such that the distances from P to all points within any one of these 
subsets are tied. I t  follows that, if points (in finite number) are evenly dis- 
tributed around the solid curve, no more than half of the interpoint distances 
will be distinct. According to the index of nondegeneracy proposed earlier, 
then, this situation is at least "half degenerate." But, as was illustrated 
in Fig. 5, whenever there is a choice between a more and a less degenerate 
configuration, the nonmetric method will move toward the more degenerate 
configuration, where the increased prevalence of ties permits the attainment 
of a lower value of stress. 

When the point P coincides with any of the four corners of the solid 
curve, the three segments a, b, and c merge into one continuous region, 
which is coextensive with the two sides opposite P and within which all 
distances from P have the same value. Hence, a configuration of four points 
corresponding to these four corners has the completely degenerate property 
that all six interpoint distances have exactly the same value. This is in 
contrast to the Euclidean case, in which no more than three points (the 
vertices of an equilateral triangle) can be mutually equidistant, and in 
which a complete four-point degeneracy (the vertices of a regular tetrahedron) 
requires three dimensions. 

In the case of higher-dimensional spaces, the contrast with the Euclidean 
metric becomes even more marked. Specifically, the maximum number of 
points, ra, that can be arranged in k dimensions, so that the points in all 
m ( m  --  1)/2 pairs are separated by the same distance is given by k n u 1, by 
2k, and by 2 k in the cases of the Euclidean, city-block, and dominance metrics, 
respectively (where the points then coincide with the vertices of the regular 
simplex, the regular cross-polytope, and the hypercube, respectively). Thus, 
the number of points that can be mutually equidistant tends, with increasing 
dimensionality, to be twice as great for the city-block metric as for the 
Euclidean and to increase exponentially faster than either for the dominance 
metric. Even in just three dimensions, the number of points for which complete 
degeneracy is possible is 4, 6, and 8, for the Euclidean, city-block, and domi- 
nance metrics. Thus, while it is not true in the Euclidean case, with a domi- 
nance metric we know in advance that in only three dimensions we can fit 
any similarity data for eight objects whatever, and that the resulting spatial 
configuration will preserve none of the structural iliformation in those data. 

The same phenomenon emerges in partial as well as complete degeneracy. 
Thus, for 16 points at the vertices of a regular 3 X 3 lattice in two dimensions, 
the number of distinct values of interpoint distance is 9, 6, and only 3 for 
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the Euclidean, city-block, and dominance metrics. Likewise, for 27 points 
at the vertices of a regular 2 X 2 X 2 lattice in three dimensions, the number 
of distinct values of distance is 9, 6, and only 2 for the same three metrics. 
And, for 16 points at the vertices of a regular 1 X 1 X 1 X 1 lattice (or 
hypercube) in four dimensions, the number of distinct values of distance is 
4, 4, and only 1. Quite generally, then, tied distances, degeneracies and, 
hence, lower levels of stress are easier to come by with non-Euclidean and, 
particularly, with the dominance metric. Consequently, while the finding 
that the lowest stress is attainable for r = 2 may be evidence that the under- 
lying metric is Euclidean, the finding that a lower stress is attainable for a 
value of r that is much smaller or larger may be artifactual. 

These same investigations disclosed some other curious properties of 
these non-Euclidean metrics. One is that the completely degenerate con- 
figuration for the city-block and dominance metrics (unlike the regular 
simplex for the Euclidean) give the misleading appearance of containing 
structural information. Thus, in the cubical degeneracy for the three-dimen- 
sional dominance metric, points separated by one edge of the cube appear to 
be related to each other in a way that points separated by two edges (or a 
face diagonal) or by three edges (or a body diagonal) do not. But, in fact, 
all pairs of points are related in the same way, and the interpoint distances 
are unchanged by any permutation of the assignment of points to vertices. 
Another fact of perhaps greater practical relevance is that, in the cases of 
the two-, three-, and four-dimensional lattices considered above, the rank 
order of the interpoint distances for the Euclidean metric (though divided 
into more levels) is entirely consistent with the rank order for the dominance 
metric (and differs, at most, by a reversal of one pair of adjacent values 
from that for the city-block metric). Thus, although it might seem quite 
natural to generate a set of stimuli by using every combination of values 
from among two, three, or four levels on each of four, three, or two physical 
dimensions, respectively, nonmetric methods of analysis would be totally 
incapable of determining whether similarity data collected for such a set 
conformed with the Euclidean or dominance metrics (and would be extremely 
inefficient, at best, in revealing a better or worse correspondence to the 
city-block metric). 

Finally, the limitations of the currently accepted practice of using 
nonmetric multidimensional scaling to test the appropriateness of the various 
Minkowski power metrics do not end with these practical and theoretical 
difficulties. There is the further limitation that this one-parameter class of 
so-called r-metrics is itself quite restricted. How much so may be seen from 
Fig. 11, which presents a hierarchy of some of the most thoroughly stud~ed 
metric spaces, ranging from the most general, represented at the top, down 
to the most specific; represented at the bottom. Note that the class of 
Minkowski r-metric spaces occupies a relatively low position in this hierarchy. 
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This is because the distance formula (displayed in the rectangle for that 
class of spaces) is extremely restrictive and, in fact, entails that the unit 
sphere in k dimensions has exactly 2k prominences for r < 2 and exactly 2 k 
prominences for r > 2. 

Much more general, is the class of general Minkowski spaces in which 
the unit spheres may have any convex, centrally symmetric shape. The 
conditions of symmetry and convexity of the unit spheres are connected 
with the distance axioms of symmetry and the triangle inequality, displayed 
in the top-most and next lower rectangles, respectively. An additional re- 
quirement, that these unit spheres be constant in size and shape throughout 
the space, entails that the general Minkowski space is isotropic and intrinsi- 
cally flat. In this last respect, general Minkowski is, in turn, less general 
than Finsler space, in which these unit spheres can change continuously 
with location in the space. Thus, Finsler space permits both the locally 
non-Euclidean properties of flat Minkowski spaces and the globally non- 
Euclidean properties of intrinsically curved Riemann spaces (indicated on 
the left in Fig. 11). Finally, even Finsler space (along with all the more 
special cases arrayed below it) presupposes a continuous underlying co- 
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ordinate space with its own intrinsic dimensionality and, so, is less general 
than the merely metric or semi-metric spaces. For, the constraints in these 
most general cases are defined solely in terms of interpoint distances and 
entail neither a specific dimensionality nor the embedability of a coordinate 
system. (For a fuller mathematical treatment of these various types of 
spaces see, e.g., Beals, Krantz, and Tversky [1968]; Blumenthal [1959]; 
Busemann [1955]; and Rund [1959].) 

Generally available methods for the analysis of similarity data have 
been designed to yield representations with metrics corresponding to only 
five of the thirteen boxes included in Fig. 11; namely, that of the ultra- 
metric (as exemplified by Johnson's [1967] formulation of hierarchical 
clustering) and those of the Minkowski r-metric and, hence, the Euclidean~ 
city-block, and dominance metrics (as already discussed). I t  is true (a) that  
general Riemann spaces and spaces of constant curvature have long been 
considered for representing, respectively, the perceived similarities among 
colors [e.g., Silberstein, 1938; Silberstein & MacAdam, 1945] and the perceived 
distances among luminous points in a dark three-dimensional field [e.g., 
Blank, 1958; 1959; Indow, in press; Luneburg, 1947, 1950]; (b) that general 
Minkowski spaces have been recognized as providing for the representation 
of considerably more diverse rules of combination than are representable 
just by the class of r-metrics [Shepard, 1964a]; and (c) that completely 
general metric spaces avoid the implication, possibly objectionable for the 
representation of semantic structure, of an underlying continuum. However, 
methods of multidimensional scaling have, up to now, not been fully extended 
to these cases. 

Prospects 
The strategy of obtaining Minkowski r-metric solutions for the same 

set of data using different values of r may still be useful in some cases. It  
apparently can provide evidence that the underlying metric is Euclidean 
or near-Euclidean. For those who wish to use this strategy, some savings 
in computation is possible owing to a kind of conjugate relationship that 
holds in certain cases between values of r above and below the Euclidean 
value of 2. Certainly in two dimensions there is no reason to seek optimum 
solutions both for r = 1 and for r = ~ .  These two limiting metrics are 
identical in two-dimensions, except for a 45 ° rotation and uniform dilation 
or contraction of the configuration as a who]e. Moreover, for intermediate 
values of r, Koopman and Cooper [1974] have just reported numerical results 
suggesting that, if r and r* stand in the relation 1/r ~- 1/r* = 1, an approxi- 
mate conjugacy holds in two dimensions such that, for practical purposes, 
it may be unnecessary to obtain two-dimensional solutions for values of r 
both above and below 2. Additional support for this suggestion may be 
found in a result that Phipps Arable (personal communication) has obtained 
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in further analyses of Ekman's [1954] color data. Corresponding to the 
r-value of about 2.5 (or 5/2) for which Kruskal [1964a, p. 24] had found that 
stress was minimum for these data, Arabie found a corresponding, con- 
jugate minimum stress at an r-value of about 5/3 (in accordance with 
2/5 + 3/5 = 1). 

However, even in two dimensions, this conjugacy does not hold strictly 
except in the limiting case of r = 1 and r*  = oo. Although the proof is too 
long to include here, I established some years ago that, for any value of r 
in the open interval between 1 and 2, there is no value, r*, greater than 2 
such that the r-metric and the r*-metric are exactly equivalent except for 
a rotation and change of scale. And, from the already mentioned fact that 
the number of points that can be arranged to be mutually equidistant in 
k-dimensions is 2k for the city-block metric but 2 k for the dominance metric, 
it is clear that conjugacy for k > 2 does not even hold in the limiting cases 
in which r and r* approach 1 and co 

In any case, the very serious limitations already noted in the use of 
Minkowski r-metric solutions to investigate the underlying rule of combination 
has led me to explore quite different approaches. One which appears to 
avoid the practical and theoretical difficulties discussed above and to offer 
considerable generality (at least for the two-dimensional case), is based 
upon results that I obtained with the collaborative help of Doug Carroll 
and Jih-Jie Chang [Shepard, 1966]. Basically, these results amount to a 
demonstration that purely Euclidean solutions can be surprisingly robust 
in the face of certain kinds of rather marked departures from the assumed 
Euclidean metric. As I shall argue, this means that one can determine the 
form of the underlying unit circle and, hence, the nature of an underlying 
(fiat and isotropic) space even though the metric is of the general Minkowski 
type or of still more general merely semimetric types. 

Our investigation was based upon a set of artificial data derived from 
a square array of 50 random points. The Euclidean distances among these 
points were converted into very non-Euclidean and, in fact, merely semimetric 
"distances" by differentially stretching or shrinking all distances depending 
upon the angular orientation of the line connecting each pair of points in 
accordance with the six-lobed unit circle shown in Fig. 12A. The resulting 
"metric" was essentially in the spirit of the general Minkowski metric. 
But, since the unit circle was nonconvex and had six rather than four prom- 
inences the metric could not be approximated by any two-dimensional 
r-metric and was strictly speaking only a semimetric. 

Nevertheless, when nonmetric multidimensional scaling (M-D-SCAL) 
was applied to these rather bizarre semimetric distances on the assumption 
that they were ordinary Euclidean distances, the obtained two-dimensional 
configuration achieved a close approximation to congruence with the randomly 
generated original configuration. For most of the individual points, the 
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Six-lobed unit circle (A) and attempted reconstruction of that semimetric unit circle 
(B) on the basis of a Euclidean multidimensional scaling solution. 

discrepancy in the recovered position of the point was small compared with 
the distance to even its nearest neighbor. When we then plotted, in polar 
coordinates, the ratio of the original (non-Euclidean) data to the recovered 
(Euclidean) distances as a function of the angle of the line between the two 
points in every pair, we obtained the scatterplot displayed in Fig. 12B. 
The six-lobed shape of the underlying unit circle reemerged quite clearly. 

In the analysis of real data, of course, the similarity measures may 
be some unknown monotone function of the underlying (non-Euclidean) 
distances rather than those distances themselves. So, in general, it would 
not be appropriate merely to plot ratios as was done for Fig. 12B. Neverthe- 
less, it should not be difficult to estimate, for each small angular interval, 
the (Euclidean) distance for which the function relating similarity to distance 
within that interval attains some specified level. I have outlined a procedure 
of this sort that, I am hopeful, will yield a good approximation to the desired 
unit circle. Depending upon whether the resulting plot is generally circular, 
square, or of some other (possibly even nonconvex) form, we could infer 
quite directly whether the metric is of the Euclidean, city-block (or 
dominance), or some other (perhaps merely semimetric) type. 

The extension of existing methods of multidimensional scaling so as to 
yield solutions in spaces of constant curvature appears straightforward but, 
to my knowledge, has not been attempted. Perhaps the method that comes 
closest to being such an extension is the "nonmetric factor analysis" method, 
SSA-III, of Guttman and Lingoes [see Lingoes, 1972]. In this method scalar 
products of vectors, rather than distances, are brought into a best monotone 
fit with the similarity data. If the vectors were all constrained to be of the 
same length, the scalar products would become equivalent to distances on 
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the surface of a hypersphere---a surface of constant positive curvature. 
Particularly since more recent findings regarding the binocular perception 
of luminous points in space have been in some ways inconsistent with Lune- 
burg's [1947] model of visual space as a (hyperbolic) manifold of constant 
negative curvature [Foley, 1972], however, there has been no insistent 
demand for methods designed to yield representations in which the curvature 
is constrained to be constant, whether positive or negative. 

Doug Carroll and I have pursued a quite different approach that appears 
to offer the appreciably greater generality of allowing for cases in which 
the intrinsic curvature of the underlying space may vary from region to 
region (as in general Riemann spaces) and, at the same time, the metric 
may behave locally as a general Minkowski metric or even as a still more 
general semimetric (such as that associated with the nonconvex unit circle 
illustrated above). Such an approach provides for the possibility that the 
underlying psychological space may be a kind of Finsler space or even some 
sere;metric generalization of such a continuous space. This generality is 
achieved by abandoning the requirement that the triangle inequality be 
satisfied while retai~fing the requirement that the similarity between the 
objects represented by two points vary in an appropriately smooth and 
continuous manner with the positions of those points in the underlying 
space. The analysis itself is carried out by applying, to the given similarity 
data, a method of "parametric mapping" to optimize an index, developed 
by Carroll, for measuring departure from a smooth or "continuous" relation 
between the data and the coordinates for the points in the underlying pa- 
rameter space [Shepard & Carroll, 1966]. 

As one test of this approach, again carried out with the collaborative 
assistance of Doug Carroll and Jih-Jie Chang [Shepard, 1968], the already- 
described square configuration of 50 random points was converted into a 
toroidal configuration by identifying opposite edges of the square and re- 
defining distances so as to be non-Euclidean in two respects; local and global. 
The locally non-Euclidean structure was induced by stretching and shrinking 
each distance as a function of its angle in accordance with the six-lobed 
unit circle in Fig. 12A; and the globally non-Euclidean structure was secured 
by taking, as the distance between any two points, the shortest such distance 
within the surface of the torus (and so, where such a path is shorter, across 
what were previously bounding edges of the square). Finally, these doubly 
non-Euclidean distances were converted into artificial similarity measures 
by means of an exponential decay transformation. 

Despite the intrinsic two-dimensionality of the underlying space, the 
best-fitting two-dimensional solution obtained by standard nonmetric multi- 
dimensional scaling (M-D-SCAL) failed (a) to achieve a good fit to the 
data, (b) to achieve an accurate representation of any (either opened out 
or projected down) version of the toroidal configuration, and (c) to permit 
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a recognizable reconstruction of the six-lobed unit circle. I t  was only by 
going to a four-dimensional space, within which the torus itself can be iso- 
metrically embedded, that a satisfactory fit was achieved. But, because the 
four-dimensional solution did not achieve a reduction to the correct intrinsic 
dimensionality of the toroidal surface itself, it was still not possible to re- 
construct the unit circle and, hence,~to infer the locally non-Euclidean form 
of the underlying metric. 

The best-fitting two-dimensional solution obtained by the method of 
parametric mapping did, after some difficulties with apparently merely 
local minima, achieve what corresponded to an opened-out version of the 
toroidal surface (akin to those presented in Shepard and Carroll, [1966] 
and in Shepard and Cermak [1973]). Moreover, the construction of a scatter- 
plot in the manner described for Fig. 12B again revealed the six-lobed form 
of the unit circle. Although in our experience the method of parametric 
mapping, even more than standard methods of nonmetric multidimensional 
scaling, is thus beset with problems of slow convergence and local minima, 
I believe that some of the suggestions made earlier for the construction of 
good initial configurations may substantially increase the effectiveness of 
the method. If so, the representation of similarities in terms of~ quite general 
semimetric but continuous coordinate spaces becomes a viable alternative. 

In this just-considered generalization, the triangle inequality was 
abandoned while the notion of a continuous underlying coordinate space 
was retained. The method of "maximum variance nondimensiohal scaling" 
that Jim Cunningham and I have recently been exploring represents a 
very different kind of generalization in which the triangle inequality is made 
central while the requirement of an underlying coordinate space is relinquished 
[Cunningham & Shepard, 1974]. In order to obtain unique nontrivial solutions, 
the requirement of minimum dimensionality (which has no meaning in the 
absence of a continuous space) was replaced by a requirement of maximum 
variance of the distances (which does and which, according to the above- 
reported results on reduction of dimensionality, seems to have a very similar 
effect). 

In test analyses with both real and artificial data, we found that, if 
we thus maximize the variance of the distances subject only to (a) the strict 
satisfaction of just tile metric axioms (particularly the triangle inequality) 
and (b) adequate maintenance of monotonicity, we can in fact recover 
underlying Euclidean or non-Euclidean distances with considerable accuracy 
without any assumption or use of a coordinate embedding space. Since we 
are able to recover the underlying distances, we are also able to recover the 
form of the unknown function relating the similarity data to the distances. 
In fact, in a test with a rather exotically non-Euclidean metric (sum-over-path 
distances in a graph-theoretic tree), the sigmoid form of this (artificially 
imposed) functional relation was recovered with great precision, while a 
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straightforward application of standard nonmetric multidimensional scaling 
to the same artificial data gave a very poor fit and approximation to the 
sigmoid function. (Compare Figs. 3 and 4 in Cunningham & Shepard [1974].) 

For many practical purposes, two drawbacks of this method may limit 
its general usefulness. First, although apparently not subject to local minima, 
so far it has tended to converge rather slowly and, so, to be relatively costly-- 
particularly for large matrices. Second, it does not, of course, yield a spatial 
configuration in a two- or three-dimensional coordinate space of the sort 
that is usually sought for purposes of substantive interpretation. Neverthe- 
less, it is of considerable theoretical interest as a demonstration of the pos- 
sibility of recovering very general, merely metric representations--corre- 
sponding to the next to the top box in Fig. 11. Moreover, as already suggested, 
it should find some uses for the study of the form of the function relating 
distances, which are potentially very non-Euclidean, to similarity measures 
of various types (such as those of stimulus generalization or reaction time) 
and, possibly, for the generation of starting configurations for methods 
that are particularly susceptible to local minima. Finally, as I shall suggest 
in the next and final section, it may provide one basis for constructing more 
discrete, network-like or graph-theoretic representations such as have been 
proposed for certain, e.g., semantic, domains. 

6. Representing Discrete or Categorical Structure 

Problem 

Standard methods of multidimensional scaling and, in fact, nearly 
all of the methods discussed above have been based upon the assumption 
of an underlying space that is continuous and has a well-defined dimension- 
a]ity. (The only exceptions discussed here were the two nondimensional 
methods of hierarchical clustering [Johnson, 1967] and maximum variance 
scaling [Cunningham & Shepard, in press].) Methods for mapping the data 
into a continuous coordinate space seem eminently appropriate for the 
investigation of domains of objects in which there is an underlying continuous 
physical variation--as there clearly is, for example, with colors which vary 
continuously in brightness, hue, and saturation; with tones which vary 
continuously in intensity, frequency, and duration; or even with facial 
expressions which also vary continuously (even though the physical dimen- 
sions of the variation are not yet completely specified). Experience indicates 
that, even when the stimuli vary only in discrete steps (as with the dot-and- 
dash signals of the Morse Code [Shepard, 1963a]), a representation within 
a continuous coordinate space is often quite satisfactory--particularly if 
the number of stimuli and number of steps of variation are not too small. 

Other domains, particularly those of a more conceptual, linguistic, or 
semantic nature, appear to be inherently more discrete, categorical, or 
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bipolar. With regard to the perception of speech, for instance, suggestive 
exaxnp]es are provided by the empirical phenomenon of "categorical percep- 
tion" [Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967] and 
by the related theoretical notion of "distinctive features" [Halle, 1964; 
Miller & Nicely, 1955]. And with regard to purely internal conceptual or 
semantic systems, inherently discrete structures seem to be the rule rather 
than the exception. Some especially clear-cut examples include the cognitive 
systems of kin terms [Haviland & Clark, 1974; Romney & D'Andrade, 1964], 
of linguistic marking [Clark, 1969, 1970; Greenberg, 1966], and of binary, 
componential, and algebraic structures in general [e.g., Boyd, 1972; L6vi- 
Strauss, 1967]. I myself have several times argued that, although a frozen 
spatial configuration may well represent the perceived relations of pair-wise 
similarities among stimuli either on the average or else for any one individual 
at any one time, such a configuration does not exhaust the cognitive structure 
of a set of stimuli. In particular it may not adequately represent the ways 
in which different subjects or the same subject at different times may see 
subsets of the stimuli as grouped together or as having some property in 
common [Shepard, 1963b, 1964a; Shepard & Cermak, 1973; Shepard, Hoviand 
& Jenkins, 1961]. 

I t  is of course true that subsets of scaled objects with strong mutual 
relations of similarity will tend to show up as visibly clustered groups of 
points even in the "continuous" spatial representations obtained by multi- 
dimensional scaling. Indeed, in their strongest form, such clusterings may 
take one of the more dramatic forms of complete degeneracy illustrated 
in Fig. 6. Moreover, objective methods of rotation or of affine transformation 
can bring out the discrete or discontinuous aspects of such a configuration 
more fully [Degerman, 1970; Kruskal, 1972; Torgerson, 1965]. Still, such 
basically continuous spatial representations, even when t!nearly transformed, 
do not (any more than transformations to simple structure in factor analysis) 
yield discrete subsets, as such, explicitly. Among other things, this makes 
it difficult to evaluate whether a seeming cluster is valid or reliable--in the 
sense that it would be if it repeatedly emerged, explicitly, in the analyses 
of independent sets of data. 

It  is also true that methods of hierarchical clustering [Jardine & Sibson, 
1971; Johnson, 1967; Sokal & Sneath, 1963] do yield both explicit and cate- 
gorical structures that, moreover, have been found to be quite useful and 
reliable in the representation of speech sounds (e.g., see Fig. 8 and Shepard 
[I972c]) and of concepts (e.g., see Fig. 1 and Shepard et al., [in press]). How- 
ever, the requirement that the clusters be hierarchically nested seems un- 
desirably restrictive for many purposes. In Fig. 8A it means that, once just 
the back fricatives [z] and [5] have been grouped with the unvoiced stops 
[d] and [g] (perhaps by virtue of their place of articulation), neither of these 
back fricatives can be grouped with either of the front fricatives iv] and [~] 
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(on the basis solely of their affrication). And in Fig. 1 it means that, once 
"cat" is grouped with the other household pet "dog," it can no longer be 
grouped with the other felines "lion" and "tiger." In short, although hierar- 
chical systems can represent some of the discrete or categorical structure 
underlying a set of similarity data, it can not represent psychological prop- 
erties, however salient, that correspond to overlapping subsets. 

For the same reason, hierarchical systems can not represent parallel 
or analogical correspondences between the structures within two nonover- 
lapping subsets (such as the parallelism in articulation between the voiced 
and unvoiced consonants [Shepard, 1972c, p. 106]). The representation of 
such parallelisms requires the specification of connections (representable 
only as overlapping clusterings) between the subparts of disjoint clusters. 
And, finally, although a hierarchical clustering is equivalent to a graph- 
theoretic tree, arbitrary graph structures (containing closed paths or cycles) 
are precluded. So hierarchical representations can not, any more than con- 
tinuous spatial representations, furnish the sorts of general graphs or networks 
currently being advocated for the representation of semantic structure 
[Anderson & Bower, 1973; Quillian, 1968; Rumelhart, Lindsay, & Norman, 
1972]. 

Prospects 
One already-noted limitation of maximum variance nondimensional 

scaling is that, because it drops the restrictive requirement that the distances 
be embedded in a coordinate space, it forfeits the pictorially presentable 
spatial configuration that has proved to be so useful in substantive applica- 
tions of multidimensional scaling. Jim Cunningham and I are currently 
exploring a possible addition to this method of nondimensional scaling 
that we hope will be able to convert the obtained set of coordinate-free 
distances into a graph structure that will meet this need for a more picturable 
representation. If we succeed, the sort of general graph structure that is 
produced should also be much closer to the kind of discrete, network-like 
representations proposed for semantic memory. The distance estimates 
furnished by such maximum variance scaling appear ideally suited for the 
purposes of constructing a graph-theoretic representation because the maxi- 
mization of variance together with the maintenance of the triangle inequality 
tends, wherever possible, to render distances additive--as they should be 
over a connected path through a graph. (Thus, as noted before, artificial 
data generated from sum-over-path distances were well fit by maximum 
variance nondimensional scaling but not by standard nonmetric multi- 
dimensional scaling.) As a first step toward the proposed addition, Cunning- 
ham [1974] has already reported encouraging results in the fitting of graphs 
of one particular type; namely, tree structures. 

A last type of method for the representation of structure in similarity 
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data to be considered here takes an entirely different approach. Although 
it is perhaps closest in spirit to the approach taken by Johnson [1967] in 
his formulation of hierarchical clustering, it departs from all methods for 
hierarchical clustering in abandoning the very strong restriction that the 
clusters never overlap. And, although it shares with both of the nondimen- 
sional methods mentioned (viz., those of hierarchical clustering and maximum 
variance scaling) the abandonment of an underlying coordinate space, it 
goes beyond both of those methods in abandoning, also, the notion of distance. 

As an initial basis for the exploratory development, with Phipps Arable, 
of a method of this type, I chose a model accoFding to which the perceived 

• similarity between any two objects is a simple sum of the psychological 
weights associated with all and only those (discrete) properties that the 
two objects both share. Formally, 

s~i = ~ w~p~kpik , 
kffil 

{10 if ob jec t /has  property k 
where p,~ = , otherwise, 

and where wk is a non-negative weight representing the psychological 
salience of property k. 

The computational problem with which we are faced is that of finding 
a minimum set of m subsets of the objects and associated optimum weights 
such that the maximum possible variance of the similarities, s,i , is accounted 
for. Although the model is closely related to the standard factor-analytic 
model, the restriction of the variables p~k to binary values converts the 
computational problem into a much more difficult, combinatorial one. As 
we have currently developed it, the • computer program, ADCLUS, for this 
type of additive cluster analysis [Arable & Shepard, 1974] proceeds in two 
successive phases; a nonmetric and then a metric one. In the first phase, 
combinatorial methods are used to generate an ordered list of subsets with 
potentially positive weights that is invariant under monotone transformations 
of the data. In the second phase, a modified gradient method is then used 
to estimate optimum weights for these subsets and to eliminate all subsets 
for which the weights become sufficiently small. 

As an illustration, Table 1 presents our nonhierarchical reanalysis 
of Miller and Nicely's [1955] data on the confusions among 16 consonant 
phonemes in the presence of white noise. These are the same data that have 
already been analyzed by a variety of more standard methods of multi- 
dimensional scaling and hierarchical clustering (see Fig. 8, Shepard [1972c] 
and, also, Wish and Carroll [in press]). In this case, approximately 99% 
of the variance was accounted for by the first 30 subsets (a representation 
that, in terms of number of parameters, is roughly comparable to the two- 
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dimensional spatial solution which also accounted for about  99% of the 
variance). The first 16 subsets (roughly comparable to a one-dimensional 
solution) are listed in Table 1, in rank order according to their estimated 
weights. The obtained subsets appear to be readily interpretable except, 
possibly, for the four (ranked 3, 8, 10, and 13) for which the interpretations 
are given in parentheses. And the last three of these subsets, despite their 
uncertain interpretations, are very  likely reliable in view of the facts (a) tha t  
the 8th (consisting of [b], [v], and [~i]) emergedrepea ted ly  in hierarchical 
analyses of independent sets of data  [Shepard, 1972c], (b) that  the 13th 
(consisting of [p], [f], and [o]) is, according to distinctive feature schemes, 
identical in structure to the 8th except for voicing, and (c) that  the 10th 
(consisting just of [b] and Iv]) is contained entirely within the 8th. What  
these results, along with those in Shepard [1972c], seem to indicate is the 
need for some revision of the distinctive feature schemes on the basis of which 
the interpretations were at tempted.  

The results show a marked departure from a striotly hierarchical struc- 
ture. The overlapping nature of the obtained subsets is apparent in Fig. 13, 
where the first 16 are embedded as closed curves in the spatial configuration 
used earlier for Fig. 8A. Note, for example, that  the relatively back fricatives, 
[z] and [5], now cluster both with the relatively back stops, [g], and [d], 
and also (through [z]) with the relatively front fricatives, [v] and [~i]. Like- 

TABLE 1 
Nonhierarchical Additive Cluster Analysis of Confusion Measures 

of Similarity Among 16 Consonants 
(Data from Miller and Nicely [1955]) 

Rank Weight Elements of Subset Interpretation 

1st 
2nd 
3rd 
4th 
5th 
6th 
7th 
8th 
9th 

10th 
l l th 
12th 
13th 
14th 
15th 
16th 

.282 

.214 
• 196 
• 1 5 7  

• 1 5 5  

• 129 
• 090 
• 074 
•071 
• 061 
• 050 
•044 
• 044 
• 035 
• 033 
.~0~ 

fO 
d g  
p k  

p t k  

m n 
0s  

b v ~  
sf 
b v  

d g z ~  

l a f a  
z ~  

g ~ 3  

front unvoiced fricatives 
back voiced stops 
(unvoiced stops omitting t) 
unvoiced stops 
front voiced fricatives 
nasals 
middle unvoiced fricatives 
(float voiced consonants) 
back unvoiced fricatives 
(front voiced consonants) 
back voiced consonants 
middle voiced fricatives 
(front unvoiced consonants) 
back voiced fricatives 
front & middle voiced fricatives 
back voiced consonants 
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wise, the front unvoiced stop [p] clusters both with the other unvoiced stops, 
It] and [k], and (as noted above) with the relatively front unvoiced fricatives, 
[f], [o]. Finally, the overlapping clusters form chains connecting the four 
progressively further back unvoiced fricatives, [f], [o], Is], and [f], and, in 
parallel fashion, the four progressively further back voiced fricatives, Iv], 
[~], [z], and [3], in a way that was not possible in the representation (Fig. 8) 
obtained by the hierarchical method. 

The results of this early test application of this nonhierarchical method 
of additive cluster analysis encourage me to believe that methods based on 
models quite different from those underlying standard methods of multi- 
dimensional scaling can provide potentially useful, complementary informa- 
tion about the psycholo~cal structure underlying a set of objects. Our 
current efforts are being directed toward improving the efficiency of the 
iterative method used to adjust the weights and to eliminate unimportant 

NASALS 

UNVOICED -el, I1~ VOICED 

FRONT 
13th Jl, ~ 8  

4th /k [s~X I 

BACK >" ~- 16th 
FRICATIVES 

FmURE 13 
The first 16 clusters from Table 2, embedded in the two-dimensional spatial con- 

figuration (of Fig. 8A) representing the same confusion measures of similarity among the 
16 consonant phonemes. 
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subsets, and toward investigating the stability of the weights for independent 
sets of data and as more or fewer subsets are eliminated. 

CONCLUSION 
After struggling with the problem of representing structure in similarity 

data for over 20 years, I find that a number of challenging problems still 
remain to be overcome--even in the simplest case of the analysis of a single 
symmetric matrix of similarity estimates. At the same time, I am more 
optimistic than ever that efforts directed toward surmounting the remaining 
difficulties will reap both methodological and substantive benefits. The 
methodological benefits that I forsee include both an improved efficiency 
and a deeper understanding of "discovery" methods of data analysis. And 
the substantive benefits should follow, through the greater leverage that 
such methods will provide for the study of complex empirical phenomena-- 
perhaps particularly those characteristic of the human mind. 
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